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Abstract In this paper, we investigate a fixed-time1

concurrent learning-based actor-critic-identifier (FxT-2

CL-ACI) control scheme for approximating the optimal3

tracking controller and identifying uncertain system4

parameters online. The proposed FxT-CL-ACI control5

scheme is applied to solve the robust optimal track-6

ing control problem for uncertain nonlinear systems7

with disturbances and actuator saturation. The interac-8

tion between the leader and follower in the Stackel-9

berg game is modeled to achieve robust optimal track-10

ing control with sequential optimization of H2 and11

H∞ performance indices. The effectiveness of the pro-12

posed FxT-CL-ACI control scheme is demonstrated by13

a numerical simulation and a hardware experiment on14

a UAV system. The results show that the FxT-CL-ACI15

control scheme can achieve robust optimal tracking16

control with fixed-time convergence and disturbance17

rejection, even in the presence of actuator saturation18

and uncertain system parameters.19
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1 Introduction 23

Optimal control design is a fundamental problem 24

in control theory with applications in various fields 25

including robotics [1], aerospace [2], and autonomous 26

systems [3]. In practical control systems, achieving 27

optimal tracking performance while handling uncer- 28

tainties [4], disturbances [5], and actuator constraints 29

[6] remains a significant challenge. The presence 30

of unknown dynamics and external disturbances can 31

severely degrade control performance or even destabi- 32

lize the system [7]. Although various robust and adap- 33

tive control methods have been developed, simultane- 34

ously optimizing tracking performance while ensur- 35

ing predictable convergence time has not been fully 36

addressed, particularly for nonlinear systems with both 37

parametric uncertainties and input saturation. Stack- 38

elberg game theory provides a promising framework 39

for solving such problems by modeling the interac- 40

tion between the leader and follower in a hierarchical 41

manner [8–10], in which the leader optimizes a perfor- 42

mance index while anticipating the follower’s response. 43

Compared with other game theory-based control meth- 44

ods, such as non-zero sum cooperative game [11,12] 45

and zero-sum game [13,14], Stackelberg games offer 46

a more structured approach to solving optimal control 47
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problems with sequential optimization of performance48

indices, including non-zero sum games [15,16], and49

mixed H2/H∞ norms [17].50

Traditional optimal control methods often rely on51

accurate system models and are sensitive to uncer-52

tainties [18,19]. While adaptive and robust control53

techniques can handle uncertainties and disturbances,54

they typically do not guarantee optimal performance55

[20,21]. Recent advances in reinforcement learning56

(RL), especially actor-critic frameworks, have enabled57

data-driven approaches for optimal control synthesis58

[22–24]. However, most existing actor-critic methods59

have two key limitations: the first is the lack of perfor-60

mance guarantees of convergence time [25,26], which61

may lead to unpredictable control performance in62

safety-critical applications, and the second is the inabil-63

ity to handle parameter uncertainties and external dis-64

turbances [27,28], which can significantly degrade con-65

trol performance. Recent works have shown promise66

in handling input saturation and disturbances using67

RL-based control methods [29,30]. However, exist-68

ing methods often struggle with the dual challenges of69

input saturation and parametric uncertainties, partic-70

ularly when aiming for optimal performance [31,32].71

Input saturation can severely degrade control perfor-72

mance and even destabilize the system if not prop-73

erly addressed [33,34]. At the same time, unknown or74

uncertain system parameters make it difficult to syn-75

thesize optimal control policies that respect input con-76

straints [35,36]. It is valuable to develop new control77

strategies that can jointly tackle these challenges and78

provide guaranteed performance and robustness.79

Despite recent advances in optimal control and RL,80

while various robust and adaptive control methods81

have been proposed [37–39], ensuring fixed-time con-82

vergence has not been adequately addressed for the83

optimal control of nonlinear systems with paramet-84

ric uncertainties and input saturation [40,41]. The lack85

of systematic frameworks that can jointly tackle these86

challenges motivates the development of new control87

strategies. Fixed-time stability theory has emerged as a88

promising solution by providing convergence guaran-89

tees within fixed time [42,43]. This property is particu-90

larly valuable for safety-critical applications requiring91

predictable performance. Papers [44,45] have shown92

that fixed-time learning methods can be applied to93

nonlinear systems with disturbances and uncertainties.94

The finite-time adaptive dynamic programming (ADP)95

method in [46,47] has demonstrated the effectiveness96

of finite-time learning for optimal control synthesis. 97

While fixed-time control has been successfully applied 98

to various control problems including stabilization and 99

tracking, existing methods primarily focus on linear 100

systems or systems with known dynamics [48,49], and 101

its application to optimal tracking control for uncertain 102

nonlinear systems remains largely unexplored. Also, 103

complex interactions between learning-based optimal 104

control and fixed-time stability have not been fully 105

investigated. 106

Key challenges in optimal tracking control include 107

achieving fixed-time convergence while ensuring 108

robust performance against uncertainties and input 109

constraints. Although finite-time control [46,49] has 110

been studied extensively, guaranteeing fixed-time con- 111

vergence independent of initial conditions remains 112

challenging [47,48], especially for nonlinear systems 113

with both parametric uncertainties and input saturation 114

[28,40]. While our approach builds upon existing meth- 115

ods, the key innovation lies in the systematic integra- 116

tion of these techniques within a unified mathemati- 117

cal framework that provides fixed-time stability guar- 118

antees for Stackelberg game equilibria. This integra- 119

tion is non-trivial as it resolves fundamental theoretical 120

conflicts between the asymptotic nature of traditional 121

game-theoretic solutions and the fixed-time require- 122

ment of real-time control applications. 123

The main contributions are: 124

1. A fixed-time concurrent learning-based robust actor- 125

critic-identifier (FxT-CL-ACI) control scheme is 126

proposed to approximate the optimal tracking con- 127

troller for uncertain nonlinear systems with dis- 128

turbances and actuator saturation, where a FxT- 129

CL mechanism with experience replay buffers is 130

developed for training the ACI. Theoretical anal- 131

ysis proves that ACI weight errors converge to 132

bounded regions in fixed time, an improvement 133

over standard concurrent learning approaches such 134

as [50,51] where asymptotic convergence is guar- 135

anteed, or recent works [4,23,47,52] that utilize 136

experience replay but lack joint system identifica- 137

tion with optimal control. 138

2. A Stackelberg game structure is developed to 139

achieve robust optimal tracking control through 140

sequential optimization with disturbance: The con- 141

troller act as leader pursues H2 performance by 142

minimizing tracking error and control energy, while 143

the disturbance act as follower optimizes H∞ per- 144
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formance to ensure disturbance attenuation. This145

structure balances trade-offs between performance146

and robustness compared with [8,9,11].147

3. A hardware experiment using a UAV platform pro-148

vides comprehensive validation of the proposed149

approach. Results validate both robust tracking per-150

formance and fixed-time convergence properties in151

a practical setting.152

Paper organization: Sect. 2 covers nonlinear system153

tracking and fixed-time control. Section 3 describes154

robust optimal tracking control with Stackelberg game155

framework. Section 4 presents the FxT-CL-ACI con-156

trol scheme. Sections 5–6 provide simulation and UAV157

experimental validation. Section 7 summarizes findings158

and future work.159

Notations: R
n and R

n×m denote the n-dimensional160

Euclidean space and space of n×m real matrices; ‖ · ‖161

denotes Euclidean norm; diag([a1, ..., an]) denotes a162

diagonal matrix with elements ai ; sat(u) denotes vec-163

tor saturation; satμi (ui ) denotes component-wise satu-164

ration with bound μi ; sig(·), sign(·) and tanh(·) denote165

sign, signum and hyperbolic tangent functions, with166

sigγ (·) = | · |γ sign(·); λ̄(·) and λ(·) denote maximum167

and minimum eigenvalues of a matrix.168

2 Preliminaries169

2.1 Nonlinear system with disturbances and saturation170

Consider the following continuous-time nonlinear sys-171

tem with disturbances and actuator saturation:172

ẋ(t) = f (x(t))+ g(x(t))sat(u(t))+ k(x(t))ω(t)173

sat(u(t)) = [satμ1(u1), ..., satμm (um)]�174

satμi (ui ) =

⎧
⎪⎨

⎪⎩

μi , ui > μi

ui , |ui | ≤ μi

−μi , ui < −μi

, i = 1, ..., m (1)175

176

where x(t) ∈ R
n is the system state vector, f : Rn →177

R
n represents the unknown drift dynamics, g : Rn →178

R
n×m is the input matrix, k : Rn → R

n×m is the distur-179

bance matrix, u(t) ∈ R
m is the control input subject to180

saturation with bounds μi > 0, and ω(t) ∈ R
m denotes181

external disturbances. The functions f (x), g(x) and182

k(x) are assumed to be locally Lipschitz continuous.183

Let xd(t) ∈ R
n denote the desired trajectory, which184

may be time-varying (e.g., xd = sin(wt)) and is gov- 185

erned by: 186

ẋd(t) = fd(xd(t), t) (2) 187
188

where fd : R
n × R

+ → R
n defines the reference 189

dynamics with explicit time-dependency to accommo- 190

date periodic or other time-varying trajectories. Let 191

X (t) = x(t)− xd(t) denote the tracking error between 192

the actual state and desired trajectory. The tracking 193

error dynamics can be derived as: 194

Ẋ(t) = ẋ(t)− ẋd(t) 195

= [ f (x)− fd(xd)]+ g(x)sat(u)+ k(x)ω 196

= F(X)+ G(X)sat(U )+ K (X)ω (3) 197
198

where F(X) = f (X + xd) − fd(xd) represents the 199

transformed drift dynamics, G(X) = g(X + xd) is the 200

transformed input matrix, K (X) = k(X + xd) is the 201

transformed disturbance matrix, and U (t) = u(t) is 202

the control input vector. The system (3) captures both 203

the tracking objective and the effects of disturbances 204

and input saturation. To ensure prescribed performance 205

tracking with bounded error trajectories, we introduce 206

the following performance transformation in the next 207

subsection. Let Φ(U ) denote the input cost function 208

inspired by the hyperbolic tangent function [31,32]: 209

Φ(U ) =
∫ u

0
2μRφ−1 (γu/μ) dγu (4) 210

211

where u = [u1, ..., um]� represents the input vec- 212

tor, φ(·) = tanh(·) is the hyperbolic tangent activa- 213

tion function for smooth approximation of saturation, 214

φ−1(·) is the inverse hyperbolic tangent function, μi > 215

0 are the component-wise saturation bounds defined 216

in (1), μ = diag([μ1, ..., μm]) denotes the diagonal 217

matrix of saturation bounds, R = diag([r1, ..., rm]) is 218

the positive definite input weighting matrix, and γu is 219

the dummy integration variable. The input cost Φ(U ) 220

provides a smooth penalty for control inputs approach- 221

ing saturation limits. The following assumption char- 222

acterizes the system dynamics and cost functions. 223

Assumption 2.1 (Boundedness and Continuity [1,5]) 224

The following conditions hold for system (1): 225

1. Bounded Disturbances: The disturbance matrix 226

K (X) is continuous and bounded by:‖K (X)‖ ≤ 227

K H for all X ∈ χ . 228
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2. Continuity and Differentiability: On a compact229

set X ∈ χ ⊂ R
n , the drift dynamics F(X)230

and input matrix G(X) are continuously differen-231

tiable with F(0) = 0. Furthermore, there exist232

positive constants L F , LG , and G H such that233

‖F(X1) − F(X2)‖ ≤ L F‖X1 − X2‖, ‖G(X1) −234

G(X2)‖ ≤ LG‖X1− X2‖, and ‖G(X)‖ ≤ G H for235

all X, X1, X2 ∈ χ .236

3. Bounded Input Cost: The cost matrices Q and R237

are positive definite symmetric matrices satisfying238

0 < λQI ≤ Q ≤ λ̄QI , and 0 < λRI ≤ R ≤239

λ̄RI , where λQ , λ̄Q , λR , λ̄R are positive constants.240

2.2 Fixed-time stability241

To achieve fixed-time stabilization of the system states,242

we introduce key definitions and lemmas from fixed-243

time stability theory that form the foundation of our244

approach.245

Definition 1 (Fixed-time Stability [6,36]) For system246

(1), if there exists a settling time T > 0 independent of247

initial conditions, such that:248

V (x(t)) ≤
{

β(V (x(0)), t), if 0 ≤ t < T

ε, if t ≥ T
(5)249

250

where ε > 0 is a small positive constant representing251

the terminal bound, such that ‖x(T ) − x∗‖ ≤ δ for252

some small δ > 0. The system is then called fixed-253

time stable, with the equilibrium point x∗ being reached254

within a fixed time T up to a small bounded error δ.255

Note that in practical implementations, exact conver-256

gence to x∗ at exactly time T may not be achievable257

due to numerical limitations and approximation errors.258

The above definition acknowledges that the system259

state converges to a small neighborhood of the equilib-260

rium point rather than exactly to x∗. To achieve fixed-261

time convergence, we propose the following fractional262

power transformation:263

Ξ(x, x∗) = V (x, x∗)γ1

1− γ1
+ V (x, x∗)γ2

1− γ2
(6)264

where V (x, x∗) is the original function, γ1 ∈ (0, 1)265

and γ2 > 1 are fractional exponents selected to ensure266

fixed-time stability.267

Lemma 2.2 (Fixed-time Convergence [37,38]) Con- 268

sider system (1) with the transformed function (6). If 269

the time derivative satisfies: 270

Ξ̇ ≤ −k1Ξ
γ1 − k2Ξ

γ2 (7) 271

where k1, k2 > 0, then the system converges to equi- 272

librium in fixed time bounded by: 273

T ≤ 1

k1(1− γ1)
+ 1

k2(γ2 − 1)
(8) 274

The transformed value function (6) with fractional 275

powers enables fixed-time convergence independent of 276

initial conditions. This transformation will be utilized 277

in developing fixed-time concurrent learning algorithm 278

in Sect. 4. 279

3 Problem formulation: robust optimal tracking 280

control with input saturation 281

Considering the nonlinear system (1) with disturbances 282

and actuator saturation, the objective is to design a 283

robust optimal tracking controller that achieves fixed- 284

time convergence and disturbance rejection. The fol- 285

lowing problem formulation establishes the Stackel- 286

berg game framework for solving the robust optimal 287

tracking control problem. First, we define finite L2 gain 288

stability required for robust control design. 289

Definition 2 (Finite L2-gain stable [22,53]) For the 290

nonlinear system (1), if there exists a positive constant 291

γ such that for any bounded disturbance input ω(t), the 292

output y(t) is bounded and satisfies: 293

∫ ∞

0
‖y(t)‖2dt ≤ γ 2

∫ ∞

0
‖ω‖2dt (9) 294

295

where y(t) = [√Q X (t),
√

RU (t)]� is the output vec- 296

tor, then the system is finite L2-gain stable with dis- 297

turbance attenuation level γ . This stability criterion 298

corresponds to the H∞ norm of the closed-loop sys- 299

tem, measuring the maximum energy gain from dis- 300

turbances to regulated outputs. The parameter γ > 0 301

is the prescribed disturbance attenuation level. If the 302

closed-loop dynamics is stable with a minimum gain 303

γ ∗ > 0, it remains stable with any γ > γ ∗ [22,53]. 304

For optimal control design, we define the following 305

H2 and H∞ performance indices with the control input 306
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Table 1 Stackelberg game framework for robust optimal control

Game Level Stackelberg Game Description

Level 1: Leader Optimization The leader pursues H2 optimal performance by minimizing: J ∗1 (X0) = minU∈ΩU J1(X0, U, ω∗)
Level 2:Follower Response Given leader’s strategy U∗, follower optimizes H∞ performance: J ∗2 (X0) = minω∈ΩW J2(X0, U∗, ω)

Level 3:Stackelberg EquilibriumThe game reaches equilibrium when:

⎧
⎨

⎩

U∗ = arg min
U∈ΩU

J1(X0, U, ω∗)
ω∗ = arg min

ω∈ΩW
J2(X0, U∗, ω)

cost function Φ(U ) in (4):307

J1(X0, U, ω) =
∫ ∞

t

(
X�Q X +Φ(U )

)
dτ (9)308

J2(X0, U, ω) =
∫ ∞

t

(
γ 2‖ω‖2−X�Q X−Φ(U )

)
dτ

(10)

309

310

where Q = diag([q1, ..., qn]) is the positive definite311

state weighting matrix, γ > 0 is the disturbance atten-312

uation level, J1 measures H2 performance and J2 mea-313

sures H∞ performance. The robust optimal tracking314

control problem is formulated as follows:315

Problem 1 Design a Stackelberg game-based con-316

troller for system (1) that:317

1. Achieves optimal control and worst-case distur-318

bance rejection with fixed-time convergence via:319

⎧
⎪⎨

⎪⎩

U∗(t) = arg min
U∈ΩU

J1(X0, U, ω∗)

ω∗(t) = arg min
ω∈ΩW

J2(X0, U∗, ω)
(11)320

where J1 and J2 are defined in (9)-(10)321

2. Ensures closed-loop finite L2-gain stability per (9)322

with fixed-time convergence.323

The Stackelberg game framework for solving this324

problem is shown in Table 1, which establishes a three-325

level hierarchical structure between the leader (con-326

troller) and follower (disturbance).327

To solve the robust optimal tracking control prob-328

lem, a Stackelberg game framework is established as329

shown in Table 1. First, we define the Stackelberg game330

formally:331

Definition 3 (Stackelberg Game [8]) Consider a two-332

player game with:333

– A leader L pursuing H2 performance index J1 in334

(9)335

– A follower F pursuing H∞ performance index J2 336

in (10) 337

The game proceeds as follows: 338

1. The leader commits to a control strategy U ∈ ΩU 339

without knowing follower’s choice 340

2. The follower observes leader’s strategy U and 341

responds with disturbance ω∗(U ) that solves: 342

J2(X0, U, ω∗(U )) = min
ω∈ΩW

J2(X0, U, ω) (12) 343

3. Anticipating follower’s response ω∗(U ), the leader 344

chooses optimal U∗ that solves: 345

J1(X0, U∗, ω∗(U∗)) = min
U∈ΩU

J1(X0, U, ω∗(U )) 346

(13) 347

The resulting pair (U∗, ω∗(U∗)) forms the Stackelberg 348

equilibrium. 349

Remark 1 (Stackelberg vs. Nash Equilibrium) Unlike 350

Nash equilibrium where players decide simultaneously, 351

our approach uses Stackelberg equilibrium (Table 1) 352

with sequential decisions. The controller (leader) acts 353

first, anticipating the disturbance (follower) response. 354

This hierarchical structure provides stronger perfor- 355

mance guarantees than Nash solutions [41], creating 356

an effective framework for balancing nominal perfor- 357

mance and disturbance rejection [17]. Our fixed-time 358

learning method ensures convergence to Stackelberg 359

equilibrium within bounded time. 360

Based on the Stackelberg game definition, the fol- 361

lower pursues H∞ performance by optimizing the 362

value function J ∗2 defined by the following minimiza- 363

tion problem: 364

J ∗2 = min
ω

J2(X0, U, ω) 365

= min
ω

∫ ∞

t

(
γ 2‖ω‖2 − X�Q X −Φ(U )

)
dτ

(14)

366

367

368
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The corresponded follower’s Hamiltonian could be369

defined as:370

HF =∇ J ∗�2 (F + GU + Kω)+ γ 2‖ω‖2371

− X�Q X −Φ(U ) (15)372
373

By taking derivative of HF (15) with respect to ω, the374

follower’s optimal disturbance can be obtained as:375

ω∗(U ) = − 1

2γ 2 K�∇ J ∗2 (16)376

377

To solve the Stackelberg game, a costate λ2 is intro-378

duced to capture the follower’s response to the leader’s379

control strategy. Inspires by literature [9,17], the fol-380

lower’s costate λ2 is defined as λ̇2 = −∇HF, where381

∇HF is the gradient of the follower’s Hamiltonian HF382

with respect to X . For the leader pursuing H2 perfor-383

mance, derived from original optimal value function384

(9), the revised optimal value function J ∗1 incorporat-385

ing the follower’s costate λ2 is defined as:386

J ∗1 = min
U

J1(X0, U, ω∗)387

= min
U

∫ ∞

t

(
X�Q X +Φ(U )+ η�λ̇2

)
dτ (17)388

389

Then the corresponding Hamiltonian of (17) for the390

leader is derived as:391

HL = ∇ J ∗�1 (F + GU + Kω)392

+ η�λ̇2 + X�Q X +Φ(U ) (18)393
394

where η is the Lagrange multiplier associated with the395

follower’s costate λ2, the Lagrange multiplier dynam-396

ics is given by η̇(t) = −∇∇ J∗2 HL, ∇∇ J∗2 denotes the397

gradient with respect to ∇ J ∗2 . Minimizing HL with398

respect to U yields the leader’s optimal control:399

U∗(ω∗) = −μφ

(
R−1

2μ

(
G�∇ J ∗1 − ∇ J ∗2

�∇Gη
))

(19)

400

401

where ∇G is the gradient of the input matrix G with402

respect to X . In summary, the optimal control policies403

for the Stackelberg game are: 404

⎧
⎪⎪⎨

⎪⎪⎩

U∗ = −μφ

(
R−1

2μ

(
G�∇ J ∗1 − ∇ J ∗2

�∇Gη
))

ω∗ = − 1

2γ 2 K�∇ J ∗2
(20) 405

Unlike approaches that handle unknown system inter- 406

nal dynamics without explicit identification [54], our 407

framework includes system identification to achieve 408

enhanced control performance and fixed-time guaran- 409

tees. This design choice enables precise coordination 410

in UAV tracking scenarios and provides mathematical 411

tractability for establishing comprehensive fixed-time 412

stability proofs. 413

Remark 2 (Symmetrical Saturation Constraints) This 414

paper employs symmetrical constraints that align with 415

our UAV platform’s actuator characteristics (‖Vmax‖ = 416

2m/s). While recent research [55] has explored 417

asymmetrical saturation models, symmetric constraints 418

enable more elegant stability proofs within our fixed- 419

time framework while still capturing essential con- 420

straint dynamics. Our continuous control approach 421

provides smoother trajectory tracking with reduced 422

mechanical jerk-a critical advantage for precision UAV 423

control. Future work will extend our framework to 424

asymmetrical constraints and potentially incorporate 425

event-triggered mechanisms to balance computational 426

efficiency with fixed-time guarantees. 427

Remark 3 (Stackelberg Game Structure) A Stackel- 428

berg game features sequential decision-making where 429

a leader moves first, followed by responders who max- 430

imize their own benefits [17,28]. In our approach, we 431

employ this mathematical structure as an optimization 432

paradigm rather than describing physical UAV inter- 433

actions. The controller (leader) and disturbance (fol- 434

lower) function as mathematical entities in a sequen- 435

tial optimization framework, with the controller antici- 436

pating the disturbance response. This formulation bal- 437

ances H2 optimal performance (minimizing tracking 438

error and control energy) with H∞ robustness (distur- 439

bance attenuation) without requiring an actual leader- 440

follower hierarchy between physical agents. 441

Due to the complexity of nonlinear dynamics and 442

robust performance indices, obtaining explicit solu- 443

tions for the optimal control inputs is challenging. 444

Therefore, in the next section, we develop a RL-based 445

approximation method using an actor-critic-identifier 446

123

Journal: 11071 MS: 11235 TYPESET DISK LE CP Disp.:2025/5/2 Pages: 21 Layout: Medium



un
co

rr
ec

te
d

pr
oo

f

Fixed-time concurrent learning-based robust approximat…

structure to approximate the optimal value functions447

and control policies while identifying uncertain system448

parameters online.449

4 Main results: fixed-time concurrent450

learning-based actor-critic-identifier451

This section presents an actor-critic-identifier architec-452

ture to approximate the robust optimal tracking control453

solution. First, the optimal value functions and control454

inputs are reconstructed using actor-critic neural net-455

works (NNs). Then, uncertain system parameters are456

identified online via an identifier. Finally, with the iden-457

tified parameters and reconstructed optimal solutions,458

Bellman errors are established and minimized to train459

the actor-critic NNs.460

4.1 Value function approximation via actor-critic461

The optimal value functions for both leader and fol-462

lower agents are approximated using critic neural net-463

works:464

J ∗i (X) = W�ci ϕci (X)+ δci (X), i = 1, 2 (21)465

∇ J ∗i (X) = ∇ϕ�ci (X)Wci +∇δ�ci (X), i = 1, 2 (22)466
467

where Wci ∈ R
nϕci×1 denotes the ideal critic NN468

weights, ϕci (X) represents the activation functions,469

and δci (X) captures the reconstruction errors. For con-470

trol policy approximation, actor neural networks are471

employed:472

U∗(X) =− μφ

(
1

2μ

(
R−1G�

(
∇ϕ�a1Wa1 +∇δ�a1

)
473

−
(

W�a2∇ϕa2 + ∇δa2

)
∇Gη

))

(23)

474

ω∗(X) =− K�

2γ 2

(
∇ϕ�a2Wa2 +∇δ�a2

)
(24)475

476

where Wai ∈ R
nϕai×1 represents the ideal actor NN477

weights, and δai (X) denotes the reconstruction errors.478

Since the ideal weights are unknown in practice, esti-479

mated weights are utilized:480

Ĵi (X) = Ŵ�ci ϕci (X), i = 1, 2 (25)481

Û (X) = −μφ

(
1

2μ

(
R−1G�∇ϕ�a1Ŵa1 482

−Ŵ�a2∇ϕa2∇Gη
))

(26) 483

ω̂(X) = − K�

2γ 2∇ϕ�a2Ŵa2 (27) 484

485

where Ŵci and Ŵai denote the estimated NN weights. 486

Remark 4 (Structure of Hamiltonian Functions) 487

Regarding the Hamiltonian function HL in (18), it’s 488

worth clarifying the representation of the optimal con- 489

trol U∗(x) and its gradient. In (20), the optimal con- 490

trol depends on the value function gradients ∇ J ∗1 and 491

∇ J ∗2 , which are approximated by neural networks as 492

∇ J ∗1 ≈ ∇ϕ�a1Ŵa1 and ∇ J ∗2 ≈ ∇ϕ�a2Ŵa2. While the 493

gradient of U∗ (Û ) with respect to state X is naturally 494

captured in the actor-critic architecture through activa- 495

tion function gradients∇ϕai (X). This is reflected in the 496

Bellman errors (32)-(33), where state derivatives are 497

handled by the neural network structure. The concur- 498

rent learning approach ensures accurate approximation 499

of both U∗ and its gradient through experience replay 500

buffers, which enhance learning by storing historical 501

data samples. 502

Remark 5 (Selection of Activation Functions) The 503

selection of activation functions in equations (26)-(27) 504

is a critical design choice affecting both approxima- 505

tion accuracy and computational efficiency. For gen- 506

eral nonlinear systems, activation functions should not 507

only match the complexity of the underlying optimal 508

control solution, but also maintain differentiability for 509

stable gradient-based learning and rain computational 510

efficiency. In this work, we selected fractional power 511

activation functions with [Xα+1
1 , . . . , (X1 X2)

α+1]� 512

because they satisfy these requirements while enhanc- 513

ing approximation capability for nonlinear optimal 514

control problems. 515

4.2 System identification via identifier 516

For systems with parametric uncertainties, the drift 517

dynamics are parameterized as: 518

F(X) = W�θ ϕθ (X)+ δθ (X) (28) 519

where ϕθ ∈ R
p contains the basis functions, Wθ ∈ 520

R
p×n represents the unknown parameters, and δθ (X) 521
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denotes the approximation error. The estimated drift522

dynamics are given by:523

F̂(X) = Ŵ�θ ϕθ (X) (29)524

where Ŵθ ∈ R
p represents the estimated parameters.525

The identification error εθ is defined as:526

εθ = F (X)− Ŵ�θ ϕθ (X) (30)527

where F (X) represents the measured true drift dynam-528

ics. Utilizing fixed-time concurrent learning, parame-529

ters are estimated online via:530

˙̂Wθ = Γθkθ

N

N∑

j=1

ϕθ (X j )[sigγ1(ε
j
θ )+ sigγ2(ε

j
θ )] (31)531

where Ŵθ ∈ R
p represents estimated parameters,532

γ1 ∈ (0, 1) and γ2 > 1 are fractional exponents,533

Γθ ∈ R
p×p is positive definite, kθ denotes the learn-534

ing rate, N indicates the experience replay buffer size,535

and sig(x) is the sign function. Based on the identified536

dynamics, the Bellman errors are formulated as:537

ε̂1 = (∇ J ∗1 )�(Ŵ�θ ϕθ + GÛ + K ω̂)538

+ X�Q X +Φ(Û )+ η�λ̇2 (32)539

ε̂2 = (∇ J ∗2 )�(Ŵ�θ ϕθ + GÛ + K ω̂)540

+ γ 2‖ω̂‖2 − X�Q X −Φ(Û ) (33)541
542

where ε̂1 and ε̂2 represent the Bellman errors for leader543

and follower agents respectively.544

Remark 6 (Fractional Power Signum Function) To545

address potential confusion, we clarify that sigγ (x)546

represents the fractional power signum function as:547

sigγ (x) = |x |γ sign(x), where sign(x) is the stan-548

dard signum function. This notation follows estab-549

lished literature in fixed-time stability theory [44,56].550

For γ > 1, this function is continuous and differ-551

entiable everywhere, resulting in standard ODEs. For552

0 < γ < 1, while not differentiable at the origin, the553

function remains continuous, and the resulting differ-554

ential equations have been rigorously shown to possess555

well-defined solutions in the Filippov sense [57]. The556

combination of terms with γ1 ∈ (0, 1) and γ2 > 1557

in our update laws enables the fixed-time convergence558

properties proven in subsection 4.4.559

4.3 Fixed-time concurrent learning560

In this subsection, we present the online weight update561

mechanism for the actor-critic neural networks based562

on minimizing Bellman errors. The learning process 563

utilizes experience replay buffers to enhance conver- 564

gence and stability. 565

Both leader and follower agents maintain historical 566

experience replay buffers: 567

⎧
⎨

⎩

D1(t) = {Û (t), ε̂1(t), {Û j (t), ε̂ j
1(t)}Nj=1}

D2(t) = {ω̂(t), ε̂2(t), {ω̂ j (t), ε̂ j
2(t)}Nj=1}

568

where {Û j (t), ε̂ j
1(t)} and {ω̂ j (t), ε̂ j

2(t)} represent his- 569

torical data samples for leader and follower agents 570

respectively. Additionally, the identifier maintains its 571

own experience replay buffer: 572

Dθ (t) = {F̂(t), εθ (t), {F̂ j (t), ε j
θ (t)}Nj=1} 573

where {ϕ j
θ (t), ε j

θ (t)} represent historical data samples. 574

The actor-critic weights are updated by minimizing 575

the following fractional fixed-time Bellman errors: 576

Ei = ‖ε̂i‖γ1+1 + ‖ε̂i‖γ2+1
577

+
N∑

k=1

(
‖ε̂k

i ‖γ1+1 + ‖ε̂k
i ‖γ2+1

)
, 578

i = 1, 2 (34) 579
580

The critic NN weights are updated using concurrent 581

learning-based gradient descent: 582

˙̂Wci =− Γci kci,1ρi [sigγ1(ε̂i )+ sigγ2(ε̂i )] 583

− Γci kci,2

N

N∑

k=1

ρk
i 584

[sigγ1(ε̂k
i )+ sigγ2(ε̂k

i )], i = 1, 2 (35) 585
586

where kci, j > 0 (i = 1, 2; j = 1, 2) are learning 587

rates, ρi = σi/
(
σ�i σi + 1

)2
is the normalized regres- 588

sion vector, ρk
i = σ k

i /
(
σ k�

i σ k
i + 1

)2
is the historical 589

normalized regression vector, σi = ∇ϕ�ci (X)(Ŵ�θ ϕθ + 590

GÛ + K ω̂) is the current regression vector, and σ k
i = 591

∇ϕ�ci (Xk)(Ŵ�θ ϕθ + GÛ k + K ω̂k) is the historical 592

regression vector. 593

Define the actor-critic NNs error as εai = Ŵai − 594

Ŵci . The actor NN weights are updated using gradient 595

descent: 596

˙̂Wai = −Γai
[
kai,1 sigγ1(εai ) 597

+kai,2 sigγ2(εai )
]

i = 1, 2 (36) 598
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Fig. 1 Control structure of the FxT-CL-ACI control scheme

599

where kai, j > 0 (i = 1, 2; j = 1, 2) are learning rates600

and Γai ∈ R
nϕ×nϕ are positive definite matrices.601

The control structure of the proposed FxT-CL-602

ACI scheme is illustrated in Fig. 1. The scheme603

integrates: Actor-Critic-Identifier NNs approximating604

optimal value functions, control policies and uncertain605

system via equations (26), (27) and (29) with fixed-time606

guarantees; Experience Replay Buffers storing histori-607

cal data samples to enhance learning stability; and FxT608

update mechanisms ensuring rapid convergence using609

fractional-power exponents γ1 ∈ (0, 1) and γ2 > 1610

as in (35) and (36). The architecture features bidirec-611

tional information flow where the leader optimizes H2612

performance while anticipating the follower’s response613

optimizing H∞ performance, creating a hierarchical614

optimization structure that balances tracking accuracy615

against disturbance rejection via Stackelberg equilib-616

rium in (20). The detailed implementation is presented617

in Algorithm 1. To highlight these distinctions clearly,618

we compare our FxT-CL-ACI with existing methods in619

Table 2.620

Remark 7 (Comparison with Other RL Methods)621

Unlike NN-based constrained RL in [27,34] that622

handles constraints but lacks fixed-time guarantees,623

our approach ensures predictable convergence times-624

critical for UAV applications. The integral-based actor-625

critic [33] addresses specific dynamics but is lim-626

ited to single-agent optimization without our multi-627

objective framework. RISE-based RL [29] compen-628

sates for time-delays but requires symmetric uncer-629

tainty bounds and lacks game-theoretic optimization.630

Our FxT-CL-ACI uniquely combines fixed-time con-631

Algorithm 1 Fixed-time Concurrent Learning-based
Actor-Critic-Identifier Control
1: Initialize:
2: ACI neural networks:
3: - Critic/Actor weights Ŵci , Ŵai (i = 1, 2)

4: - Identifier parameters Ŵθ

5: Learning parameters:
6: - Learning rates kci, j , kai, j (i = 1, 2, j = 1, 2)

7: - Gain matrices Γθ , Γai , Γci (i = 1, 2)
8: - Fractional exponents γ1, γ2
9: - Buffer sizes N

10: Simulation time Tend
11: Online Learning:
12: while t < Tend do
13: // State Measurement & Reference
14: Obtain current state X and reference Xd
15: // Policy Approximation
16: Compute control input Û (X) via (26)
17: Compute disturbance ω̂(X) via (27)
18: // System Identification
19: Estimate dynamics F̂(X) via (29)
20: Compute ID error εθ via (30)
21: // Learning Error Computation
22: Calculate Bellman errors:
23: - Leader: ε̂1 via (32)
24: - Follower: ε̂2 via (33)
25: // Experience Replay Update
26: Update buffers:
27: D1(t)← {Û , ε̂1, {Û j , ε̂

j
1 }Nj=1}

28: D2(t)← {ω̂, ε̂2, {ω̂ j , ε̂
j
2 }Nj=1}

29: Dθ (t)← {F̂, εθ , {F̂ j , ε
j
θ }Nj=1}

30: // Neural Network Updates
31: Update weights:
32: - Critics: Ŵci via (35)
33: - Actors: Ŵai via (36)
34: - Identifier: Ŵθ via (31)
35: // Control Execution
36: Apply control input Û (X) to system
37: end while

vergence with H2/H∞ optimization and concurrent 632

learning, providing superior guarantees for both nom- 633

inal operation and under uncertainties. 634

Remark 8 (Handling Sequential Policy Updates) 635

Sequential policy updates in Stackelberg games may 636

cause oscillations, slow convergence, and jerky control 637

signals due to players reacting to outdated information. 638

Our FxT-CL-ACI framework addresses these chal- 639

lenges through: (1) Fractional power signum functions 640

for smooth convergence behavior; (2) Two-timescale 641

learning with faster controller updates than disturbance 642
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Table 2 Comparison of FxT-CL-ACI with existing methods

Method FxT Concurrent H∞ Uncertainty Input
Converge Learning Optimizat Handling Constraints

H∞-ADP [22,23,50] ✗ � � ✗ �
CL-SysID [4,36] � � ✗ � ✗

Classical CL [51] ✗ � ✗ ✗ ✗

Regular ADP [24,52] ✗ ✗ ✗ ✗ �
Our FxT-CL-ACI � � � � �

model updates; (3) Concurrent learning with prioritized643

experience replay to reduce outdated sample influence;644

and (4) Constrained neural network weights to prevent645

control signal jumps. These mechanisms ensure sta-646

ble performance despite the sequential nature of game-647

theoretic optimization.648

Remark 9 (Identification vs. Integral RL) While inte-649

gral reinforcement learning (IRL) could eliminate650

explicit F(x) identification as in [22,50], our identifier-651

based approach offers key advantages for UAV appli-652

cations. First, it provides fixed-time rather than asymp-653

totic convergence guarantees. Second, it delivers supe-654

rior robustness against matched and unmatched uncer-655

tainties. Third, it offers better computational efficiency656

by avoiding complex activation function integrals. To657

our knowledge, fixed-time IRL remains unexplored658

in literature. Our future work aims to develop such659

a framework [22,23], combining IRL’s model-free660

advantages with fixed-time convergence guarantees.661

4.4 Stability analysis662

In this subsection, we prove that under the proposed663

robust optimal tracking control scheme, the closed-loop664

system states and actor-critic NN estimation errors are665

ultimately uniformly bounded (UUB). We first intro-666

duce three key assumptions required for the stability667

analysis.668

Definition 4 (Ultimate Uniform Boundedness [14,58])669

A solution x(t) of a system is said to be ultimately uni-670

formly bounded (UUB) if there exist positive constants671

b and c, independent of initial time t0 ≥ 0, and for any672

a ∈ (0, c), there exists a positive constant T = T (a, b),673

such that ‖x(t0)‖ ≤ a implies ‖x(t)‖ ≤ b for all674

t ≥ t0 + T .675

Assumption 4.1 (Neural Network Boundedness [31, 676

32]) The neural network parameters satisfy the fol- 677

lowing uniform boundedness conditions (i = 1, 2): 678

1. The critic networks satisfy: 679

‖Ŵci‖ ≤ WHci , ‖ϕci (X)‖ ≤ ϕHci , 680

‖∇ϕci (X)‖ ≤ ϕD,Hci , ‖δci (X)‖ ≤ δHci , 681

‖∇δci (X)‖ ≤ δD,Hci 682

2. The actor networks satisfy: 683

‖Ŵai‖ ≤ WHai , ‖ϕai (X)‖ ≤ ϕHai , 684

‖∇ϕai (X)‖ ≤ ϕD,Hai , ‖δai (X)‖ ≤ δHai , 685

‖∇δai (X)‖ ≤ δD,Hai 686

3. The identifier networks satisfy: 687

‖Ŵθ‖ ≤ WHθ , ‖ϕθ (X)‖ ≤ ϕHθ , 688

‖∇ϕθ (X)‖ ≤ ϕD,Hθ , ‖δθ (X)‖ ≤ δHθ , 689

‖∇δθ (X)‖ ≤ δD,Hθ 690

where WH∗, ϕH∗, ϕD,H∗, δH∗, δD,H∗, σH∗, σD,H∗ are 691

positive constants, and the upper bound of approxi- 692

mation errors δD,H = max{δD,Hc1, δD,Hc2, δD,Ha1, 693

δD,Ha2, δD,Hθ }. 694

Assumption 4.2 (Persistent Excitation [52,59]) For 695

each agent i = 1, 2, the online and historical data must 696

satisfy the following excitation conditions to ensure 697

sufficient learning: (1) Online Data Excitation: 698

Λ1,iIm,i �
∫ t+T

t
ρi (τ )σi (τ )�dτ, ∀t ≥ t0, i = 1, 2 699

(37) 700

(2) Historical Data Excitation: 701

Λ2,iIm,i 702

� inf
t≥t0

1

N

N∑

k=1

ρk
i (t)σ k

i (t)�, ∀t ≥ t0, i = 1, 2 (38) 703

123

Journal: 11071 MS: 11235 TYPESET DISK LE CP Disp.:2025/5/2 Pages: 21 Layout: Medium



un
co

rr
ec

te
d

pr
oo

f

Fixed-time concurrent learning-based robust approximat…

(3) Combined Data Excitation:704

Λ3,iIm,i705

�
N∑

k=1

∫ t+T

t

ρk
i (τ )σ k

i (τ )�

N
dτ, ∀t ≥ t0, i = 1, 2706

(39)707

where Im,i is the identity matrix of dimension m, and708

at least one excitation measure Λ j,i ( j = 1, 2, 3) must709

be strictly positive to guarantee sufficient exploration710

for learning convergence.711

Based on the controller (26) and disturbance (27)712

designs, we have:713

‖U∗(X)− Û (X)‖2 ≤ Σ1W̃�a1W̃a1 +Π1 (40)714

‖ω∗(X)− ω̂(X)‖2 ≤ Σ2W̃�a2W̃a2 +Π2 (41)715
716

where Σi depends on upper bouds ϕH,i , ϕD,Hi , σHi ,717

σD,Hi , and Πi depends on upper boud δD,Hi .718

Remark 10 (Derivation of Control Policy Error Bounds)719

The upper bounds in equations (40)-(41) representing720

the squared error between optimal policies (U∗(X),721

ω∗(X)) and their estimates (Û (X), ω̂(X)) are derived722

as follows:723

‖U∗(X)−Û (X)‖2 = ‖−1

2
R−1

1 G�(W̃�a1ϕa1+δa1)‖2724

≤ 1

4
‖R−1

1 G�‖2 · ‖ϕa1‖2 · ‖W̃a1‖2725

+ 1

4
‖R−1

1 G�‖2 · ‖δa1‖2726

≤ 1

4
‖R−1

1 G�‖2 · ϕ2
H,1 · ‖W̃a1‖2727

+ 1

4
‖R−1

1 G�‖2 · δ2
D,H1728

= Σ1W̃�a1W̃a1 +Π1729
730

where Σ1 = 1
4‖R−1

1 G�‖2 · ϕ2
H,1 depends on the731

upper bounds of the activation functions ϕH,1, and732

Π1 = 1
4‖R−1

1 G�‖2·δ2
D,H1 depends on the upper bound733

of the approximation error δD,H1. Similarly, for the dis-734

turbance policy:735

‖ω∗(X)− ω̂(X)‖2 ≤ Σ2W̃�a2W̃a2 +Π2736
737

where Σ2 and Π2 are analogously defined based on the738

bounds ϕH,2 and δD,H2. These analytical bounds estab-739

lish the relationship between neural network weight740

estimation errors and policy approximation errors, 741

which is crucial for the stability analysis in Sect. 4.4. 742

The main stability result is given in the following the- 743

orem: 744

Remark 11 (Practical Verification of Assumptions) 745

While Assumptions 4.1 and 4.2 provide theoretical 746

guarantees for our approach, their practical verification 747

is equally important: For Assumption 4.1, we employ 748

neural networks with proper design, which is referred 749

to literature [47,60], to ensure approximation capabili- 750

ties within the compact set of interest. The approxima- 751

tion errors in our simulation and experimental results 752

remain within the theoretically predicted bounds, vali- 753

dating this assumption. For Assumption 4.2, the Persis- 754

tent Excitation (PE) condition is essential for concur- 755

rent learning stability. To ensure this condition is met, 756

our implementation includes a large-size history stack, 757

in which data samples N is selected as 30 lature [24,51] 758

inspired by in both simulation and experimental setups. 759

This ensures that the rank condition is satisfied through- 760

out operation, as evidenced by the consistent conver- 761

gence behavior observed in our experiments. 762

Theorem 4.3 (Traditional Actor-Critic (γ1 = 0, γ2 = 763

1) [61]) Consider the closed-loop system (1) under the 764

proposed FxT-CL-ACI control scheme in Algorithm 1. 765

Let Assumptions 2.1-4.2 hold, γ1 = 0 and γ2 = 1, 766

and the system parameters are known. Then the FxT- 767

CL-ACI reduces to the traditional Actor-Critic (AC) 768

control scheme. 769

If the AC neural networks are updated according to 770

(35) and (36), with control and disturbance policies 771

estimated by (26) and (27), then the closed-loop sys- 772

tem state X and all weight estimation errors remain 773

ultimately uniformly bounded (UUB) if: 774

‖Z‖ ≥
√

γres

λH
(42) 775

where: 776

– Z = [X�, W̃�c1, W̃�c2, W̃�a1, W̃�a2]� is the aug- 777

mented error state vector containing tracking errors 778

and weight estimation errors 779

– γres is the residual approximation error bound 780

arising from neural network reconstruction errors 781

defined as: 782

γres = 1

2
kc1,1

(
1

4
W̃�a1Gσ W̃a1 + ξH1 +Δ1

)2

+ γ 2Πu2 783
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+ 1

2
kc2,1

(
1

4
W̃�a2 Kσ W̃a2 − 1

4
W̃�a1Gσ W̃a1 +Δ2

)2

784

+ 1

2
kc1,2

(
1

4
W̃�a1Gσ,k W̃a1 +Δk

1

)2

+ λ̄R,1Πu1785

+ 1

2
kc2,2

(
1

4
W̃�a2 Kσ,k W̃a2 − 1

4
W̃�a1Gσ,k W̃a1 +Δk

2

)2

786
787

– λH is the minimum eigenvalue of matrix H788

defined as:789

H =

⎡

⎢
⎢
⎢
⎢
⎣

h1 0 0 0 0
0 h2 0 0 0
0 h3 h4 0 0
0 h5 0 h6 0
0 0 h7 0 h8

⎤

⎥
⎥
⎥
⎥
⎦

790

791

with elements h1 to h8 defined as: h1 = λQ1−λQ2,792

h2 = 1
2 kc1,1σ1σ

�
1 + 1

2 kc1,2Λ2,1Im,1, h3 = (kc1,1+793

kc2,1)σ1σ
�
2 , h4 = 1

2 kc2,1σ2σ
�
2 + 1

2 kc2,2Λ2,2Im,2,794

h5 = −Γa1Im,1, h6 = Γa1Im,1 − λ̄R,1Σu1Im,1,795

h7 = −Γa2Im,2, h8 = Γa2Im,2 + γ 2Σu2Im,2.796

Proof Consider the following Lyapunov function can-797

didate for the time-varying closed-loop system:798

V (X, t) =
2∑

i=1

(

J ∗i (X, t)+ 1

2
W̃�ci (t)W̃ci (t)799

+1

2
W̃�ai (t)W̃ai (t)

)

800

where J ∗i (X, t) is the optimal value function for agent801

i at time t . This Lyapunov function is positive definite802

and radially unbounded, satisfying V (0, t) = 0 and803

V (X, t) > 0 for all X �= 0 and t ≥ 0. Its time-varying804

nature accounts for neural network weight adaptation,805

changing references, and external disturbances in the806

closed-loop system. The approximated Bellman errors807

for both leader and follower agents can be expressed808

as:809

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̂1 = −σ�1 W̃c1 + 1

4
W̃a1Gσ W̃a1 +Δ1 + ξH1

ε̂2 = −σ�2 W̃c2 + 1

4

(
W̃a2 Kσ W̃a2 − W̃a1Gσ W̃a1

)

+Δ2 + ξH2

ε̂k
1 = −(σ k

1 )�W̃c1 + 1

4
W̃a1Gk

σ W̃a1 +Δk
1

ε̂k
2 = −(σ k

2 )�W̃c2 + 1

4

(
W̃a2 K k

σ W̃a2 − W̃a1Gk
σ W̃a1

)
+Δk

2

810

where Gσ = ∇ϕ�a1G R−1
1 G�∇ϕ�a1, Kσ = 1

2γ 2∇ϕ�a2811

K R−1
2 K�∇ϕ�a1, Gk

σ = Gσ (Xk), K k
σ = Kσ (Xk), and812

Δi ,Δ
k
i represent uniformly bounded approximation 813

errors. Taking the time derivative of V along system 814

trajectories: 815

V̇ =
2∑

i=1

[
∇ J∗i (F + GU + Kω)+ W̃�ci

˙̂W�ci + W̃�ai
˙̂W�ai

]
816

Substituting the weight update laws from (35) and (36): 817

V̇ =
2∑

i=1

[∇ J ∗i (F + GU + Kω) 818

−W̃�ci kci,1ρi [ε̂i + ε̂i ] − W̃�ci
kci,2

N

N∑

k=1

ρk
i [ε̂k

i 819

+ε̂k
i ] − W̃�ai Γai [kai,1εai + kai,2εai ]

]
820
821

Substituting the Hamiltonian functions and Bellman 822

errors yields: 823

V̇ ≤ −X� (Q1 − Q2) X −Φ(U )− γ 2‖ω‖2 − η�λ̇2 824

−
2∑

i=1

kci,1W̃�ci
σi

ρi

(

−σ�i W̃ci + 1

4
W̃�ai Σi W̃ai +Δi

)

825

−
2∑

i=1

kai,1W̃�ai Γai

(
Ŵai − Ŵci

)
826

−
2∑

i=1

kci,2

N
W̃�ci

N∑

k=1

σ k
i

ρk
i

(
−(σ k

i )�W̃ci +Δk
i

)
(43) 827

828

Leveraging the PE conditions from Assumption 4.2, 829

these PE conditions ensure sufficient richness in both 830

current and historical data samples, guaranteeing that: 831

W̃�ci kci,1ρiσ
�
i W̃ci ≥ kci,1Λ1,i‖W̃ci‖2 (44) 832

W̃�ci
kci,2

N

N∑

k=1

ρk
i (σ k

i )�W̃ci ≥ kci,2Λ2,i‖W̃ci‖2 (45) 833

834

Then using (40), (41) and Young’s inequality, we 835

obtain: 836

V̇ (Z) = Z T H Z + γres 837

≤ −λH ‖Z‖2 + γres 838
839

When ‖Z‖ >
√

γres
λH

, we have V̇ (Z) < 0, which forces 840

the trajectory to enter and remain within the bounded 841

region, satisfying the UUB definition. Therefore, when 842
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condition (42) is satisfied, the closed-loop system state843

X and actor-critic estimation errors are ultimately uni-844

formly bounded. ��845

Theorem 4.3 establishes the UUB property of the846

closed-loop system states and actor-critic NN esti-847

mation errors under the traditional AC scheme. The848

proof demonstrates that the proposed FxT-CL-ACI849

control scheme guarantees robust optimal tracking per-850

formance for the leader-follower agents in the Stack-851

elberg game framework. Next, we extend the analysis852

to the fixed-time convergence case, where the learning853

errors of the ACI NNs converge to a bounded region in854

fixed time.855

Theorem 4.4 (FxT-CL-ACI (0 < γ1 < 1, γ2 > 1))856

Consider the concurrent learning update law (31),857

(35) and (36) under the proposed FxT-CL-ACI control858

scheme in Algorithm 1. Let Assumptions 2.1-4.2 hold,859

and suppose the following condition is satisfied:860

√

2λ̄Γ

(2λΓ )γ2+1 <
α1

β
(46)861

where Γ = diag([Γc1, Γc2, Γa1, Γa2, Γθ ]) is the gain862

matrix. Then the estimation errors of the actor-critic-863

identifier NN weights W̃=[W̃�c1, W̃�c2, W̃�a1, W̃�a2, W̃�θ ]�864

converge to a bounded region in fixed time:865

‖W̃ (t)‖ ≤
√

λ̄Γ

λΓ

min{
√

2λ̄Γ , ξ̄} ∀t ≥ T (47)866

where the convergence time T is bounded by Tmax:867

Tmax = 2

α(γ2 − 1)
868

+ 2(1− (2λ
−1/2
Γ min{ξ̄ ,

√
2λ̄Γ })1−γ1)

α2(1− δ)(1− γ1)(2λΓ )(γ1+1)/2
(48)869

870

with ξ̄ defined as:871

ξ̄ = max

{
δD,H

min{λ1/2
Ψ (t), λ̄h}

,

(
β

α2δ

)1/γ1
}

(49)872

873

and the coefficients defined as:874

α = α1(2λΓ )(γ2+1)/2 − β

√

2λ̄Γ (50)875

α1 = 21−γ2 n(1−γ2)/2(K1Λ
(γ2+1)/2
1,i + K2Λ

(γ2+1)/2
2,i )

(51)

876

α2 = K1Λ
(γ1+1)/2
1,i + K2Λ

(γ1+1)/2
2,i + K3Λ

(γ1+1)/2
3,i

(52)

877

β = (K1 + K2 + K3)[n(2−γ1)/4δ
γ1
D,H + δ

γ2
D,H ] (53) 878

879

with additional terms defined asϕ = [ϕ�c1, ϕ
�
c2, ϕ

�
a1, ϕ

�
a2, 880

ϕ�θ ]�, δ = [δ�c1, δ
�
c2, δ

�
a1, δ

�
a2, δ

�
θ ]�, Ψ (t) = ϕ(t)ϕ�(t) 881

corresponds to instantaneous data excitation with 882

lower bound Λ1,i , Θ = 1
N

∑N
k=1 ϕ(τk)ϕ

�(τk) repre- 883

sents historical data excitation with lower bound Λ2,i . 884

Proof Consider the Lyapunov function candidate: 885

V (t) = 1

2
W̃�(t)Γ −1W̃ (t) (54) 886

Taking the time derivative of V (t), the following 887

expression is obtained: 888

V̇ (t) = tr{−K1W̃�(t)ϕ(t)(

⌊

ϕ�(t)W̃ (t)− δ�(t)

⌉γ1

889

+
⌊

ϕ�(t)W̃ (t)− δ�(t)

⌉γ2

) 890

− K2

N
W̃�(t)

N∑

k=1

ϕ(τk)(

⌊

ϕ�(τk)W̃ (t)− δ�(τk)

⌉γ1

891

+
⌊

ϕ�(τk)W̃ (t)− δ�(τk)

⌉γ2

)} (55) 892
893

where K1 = diag([kci,1, kai,1, kθ ]), K2 = diag([kci,2, 894

kai,2, kθ ]). For the case where |(ϕ�W̃ )i | ≥ |δi |, we 895

have sign(ϕ�W̃−δ�) = sign(ϕ�W̃ ). For 0 ≤ γ1 < 1, 896

using the inequality |y1 + y2|γ1 ≤ |y1|γ1 + |y2|γ1 , we 897

obtain: 898

|(ϕ�(t)W̃ (t))i |γ1
899

≤ |(ϕ�(t)W̃ (t))i − δi (t)|γ1 + |δi (t)|γ1
900
901

Also, for γ2 > 1, using |y1 + y2|γ2 ≤ 2γ2−1(|y1|γ2 + 902

|y2|γ2), we have: 903

− |ϕ�(t)W̃ (t)− δ(t)|γ2
904

≤ −21−γ2 |ϕ�(t)W̃ (t)|γ2 + |δ(t)|γ2
905
906

Using the PE conditions from Assumption 4.2, the time 907

derivative of V (t) can be further bounded as: 908

V̇ (t) ≤ −α2‖W̃ (t)‖γ1+1−α1‖W̃ (t)‖γ2+1+β‖W̃ (t)‖
(56)

909

910
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where the coefficients now explicitly incorporate the911

PE measures:912

α1 = 21−γ2 n(1−γ2)/2(K1Λ
(γ2+1)/2
1,i + K2Λ

(γ2+1)/2
2,i )

(57)

913

α2 = K1Λ
(γ1+1)/2
1,i + K2Λ

(γ1+1)/2
2,i + K3Λ

(γ1+1)/2
3,i

(58)

914

β = (K1 + K2 + K3)[n(2−γ1)/4δ
γ1
D,H + δ

γ2
D,H ] (59)915

916

Note that Ψ (t) = ϕ(t)ϕ�(t) corresponds to instan-917

taneous excitation with lower bound Λ1,i , Θ =918

1
N

∑N
k=1 ϕ(τk)ϕ

�(τk) represents historical data exci-919

tation with lower bound Λ2,i , and the integrated exci-920

tation over time interval [t, t+T ] has lower bound Λ3,i .921

Then, for V (t) > 1, we have the following inequality922

holding:923

V̇ (t) ≤ −αV (γ2+1)/2(t) (60)924

where α = α1(2λΓ )(γ2+1)/2 − β
√

2λ̄Γ is positive925

when:926

α1

β
>

√

2λ̄Γ

(2λΓ )γ2+1 (61)927

Then, the Lyapunov function V (t) converges to a928

bounded region in fixed time T ≤ Tmax, where the929

states are fixed-time attractive with bound:930

‖W̃ (t)‖ ≤
√

λ̄Γ /λΓ min{
√

2λ̄Γ , ξ̄} (62)931

where:932

ξ̄ = max

{
δD,H

min{λ1/2
Ψ (t), λ̄h}

, (
ω

α2δ
)1/γ1

}

(63)933

This completes the proof showing fixed-time con-934

vergence of proposed FxT-CL-ACI control scheme’s935

learning process. ��936

5 Simulations verification937

In this section, we validate the effectiveness of the pro-938

posed FxT-CL-ACI control scheme through compre-939

hensive numerical simulations.940

5.1 Simulation setup 941

Consider an uncertain nonlinear system with drift 942

dynamics (1) in the form: 943

f =
[

x1 x2 0 0
0 0 x1 x2(cos(2x1)+ 2)

]

×

⎡

⎢
⎢
⎣

Wθ (1)

Wθ (2)

Wθ (3)

Wθ (4)

⎤

⎥
⎥
⎦ (64) 944

g =
[

sin(2x1 + 1)+ 2 0
0 cos(2x1)+ 2

]

, k =
[

1
1

]

(65)

945

946

where the actual value of the unknown drift param- 947

eters are set as Wθ = [−1, 1,−0.5,−0.5]�, the 948

basis function of the identifier is defined as ϕθ = 949

[X1, X2, X1, x2(cos(2x1) + 2)]�. The approximate 950

optimal control input is computed from (26), and the 951

approximate worst disturbance is derived from (27). 952

The actor-critic neural networks are updated according 953

to (35) and (36). The detailed NN setup is as follows: 954

– Basis functions ϕi j (i = c, a, j = 1, 2) are defined 955

as: 956

ϕi j= 1

α + 1

[
Xα+1

1 , (X1 X2)
α+1, Xα+1

2 , (X2
1 X2)

α+1, 957

(X1 X2
2)α+1, (X2

1 X2
2)

α+1
]�

958959

where Xi denotes the i-th state variable of the sys- 960

tem, α ∈ (0, 1] is the fractional power. We choose 961

α = 1 in the simulation. 962

– Initial AC NN weights: Ŵci j (0) = Ŵai j (0) = 963

1(i = 1, 2, j = 1, · · · , 6). 964

The complete set of control parameters is provided 965

in Table 3. The simulation is conducted in MATLAB 966

R2023b on a computer with Intel i3-12100 CPU and 967

24GB RAM. The simulation time is set to T = 20 sec- 968

onds, and the ODE solver is set to the 4th-order Runge– 969

Kutta method with a fixed time step of 0.001 seconds, 970

while the random seed is set to 1 for reproducibility. 971

5.2 Simulation results 972

The simulation results demonstrating the effectiveness 973

of the proposed FxT-CL-ACI scheme are shown in 974

Fig. 2. The evolution of actor-critic NN weights is pre- 975

sented in Figs. 2a -2b, which show convergence of the 976
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Table 3 Parameters of simulation cases

Component Parameter Value

Leader Cost Matrix R1 = I2, Q1 = 2I2

Critic Params k1,c1 = 0.5, k1,c2 = 0.1

Actor Params k1,ai = 1, Γ j = I6

Follower Cost Matrix R2 = I2, Q2 = 2I2

Critic Params k2,c1 = 0.5, k2,c2 = 0.1

Actor Params k2,ai = 1, Γ j = I6

Common Fixed-time γ1 = 0.8, γ2 = 1.2

Other γ = 2, μ = 0.5

Fig. 2 Results of the FxT-CL-ACI scheme in tracking control simulation

learning process. Figure 2c displays the control inputs977

and disturbances acting on the system. The tracking978

performance is illustrated in Fig. 2a, which shows that979

the system states successfully track their desired trajec-980

tories. he Bellman errors and costate function evolution981

are shown in Fig. 2b, validating the optimality of the982

learned control policy. Figure 2c presents the tracking983

errors, demonstrating that they remain bounded and984

converge to a small neighborhood of zero under the 985

proposed control scheme. 986

6 Hardware experiments 987

In this section, a UAV-based physical experiments are 988

conducted to further verify the effectiveness of the pro- 989

posed FxT-CL-ACI control scheme. 990
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Fig. 3 Hardware equipment used in the UAV tracking control experiment

Fig. 4 Information flow in the UAV tracking system

6.1 Experimental setup991

The experiment is conducted on an X150 quadrotor992

UAV platform to validate the trajectory tracking capa-993

bilities of the proposed control scheme. The integrated994

hardware system consists of the following components:995

I. UAV Platform: The quadrotor UAV is equipped996

with an RK3566 quad-core processor and 4GB RAM997

for real-time computation. Four high-performance brush-998

less DC motors with precision ESCs provide reliable999

actuation. A 9-axis IMU enables high-accuracy attitude1000

estimation. A 5GHz dual-band WiFi module ensures1001

reliable communication with the ground station. The1002

dynamic model of the UAV could be formulated as1003

ẋ = Vx = ux , ẏ = Vy = uy , and u = [ux , uy]� is the1004

control input vector in 2-dimensional space. The distur-1005

bance acting on the UAV is from the external wind and1006

sensor noise. The UAV and ground workstation com-1007

municate state information through a 5GHz wireless1008

network with a standard UDP protocol as illustrated in1009

Fig. 41010

II. Testing Environment: The experimental setup1011

utilizes a professional OptiTrack motion capture sys-1012

tem with 8 high-speed cameras providing sub-millimeter1013

precision 6-DOF pose tracking at 120Hz. A dedicated1014

ground control station (Intel i7-12700, 32GB RAM) 1015

runs the optimized motion capture software for real- 1016

time trajectory recording and controller implementa- 1017

tion. 1018

III. Control Implementation: The control system 1019

operates at 30Hz with deterministic timing (Δt = 1020

1/30s). Velocity commands are transmitted via robust 1021

WiFi communication. High-rate state feedback is pro- 1022

vided by the motion capture system at 120Hz. Online 1023

learning is efficiently executed on the ground station 1024

computer. 1025

To enhance computational efficiency and learning 1026

convergence, we adopt an fractional-order finite-time 1027

neural network architecture for the actor-critic net- 1028

works as: 1029

ϕi j =
[

1

α + 1
Xα+1

1 ,
1

α + 1
Xα+1

2 ,
1

α + 1
(X1 X2)

α+1
]�

1030

which is proposed in [47,60]. All the initial network 1031

weights are configured as Ŵi j = 10, and the other 1032

parameters are the same as in the simulation setup in 1033

Table 3. Figure 3 shows the complete hardware setup 1034

used in the experiments. This integrated system enables 1035

comprehensive validation of the proposed FxT-CL-ACI 1036

scheme under real-world conditions. To evaluate con- 1037

troller performance under realistic disturbances includ- 1038

ing wind effects, aerodynamic forces, and sensor noise, 1039

we design a circular reference trajectory with: 1040

{
Radius: r = 1.5 meters

Period: T = 10π ≈ 31.4 seconds
(66) 1041

This trajectory allows thorough assessment of the track- 1042

ing capabilities and disturbance rejection properties of 1043

the proposed control scheme. The experimental results 1044

are shown in Fig. 5-7. Figure 5 shows the sketch of the 1045

UAV tracking the reference trajectory with high pre- 1046

cision. The 3D trajectory tracking performance illus- 1047

trated in Fig. 6 demonstrates accurate reference fol- 1048

lowing capability. 1049
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Fig. 5 Sketch of the UAV tracking the reference trajectory in
the experiment (with sketch UAV representing position)

Fig. 6 Trajectory of the UAV in 3-dimensional space

6.2 Performance analysis1050

Basic Tracking Performance: As shown in Fig. 7a,1051

the UAV achieves precise 2D trajectory tracking with1052

an small error of±0.5 m. The tracking errors eX and eY1053

in Fig. 7b remain bounded within±0.6 m despite exter-1054

nal disturbances. The evolution of critic NN weights in1055

Fig. 7c shows rapid convergence within 100 s, validat-1056

ing the fixed-time learning property.1057

Control System Analysis: Fig. 7a shows that the1058

control inputs remain within saturation bounds while1059

achieving desired tracking performance. The UAV’s1060

Euler angles depicted in Fig. 7b exhibit smooth transi-1061

tions during trajectory following. The 3D error distribu- 1062

tion visualization in Fig. 7c reveals that most tracking 1063

errors are concentrated within a small region around 1064

the reference trajectory. 1065

Advanced Performance Metrics: Fig. 7a analyzes 1066

the correlation between tracking velocity and position 1067

error, showing that higher velocities generally corre- 1068

spond to larger tracking errors. The statistical distri- 1069

bution of error peaks in Fig. 7b follows a correlation 1070

coefficient of R = −0.024, with mean velocity v = 1071

0.31 m/s and error standard deviation σ = 0.5681 m. 1072

The energy consumption analysis in Fig. 7c demon- 1073

strates efficient performance with maximum kinetic 1074

energy of 0.5 J and power consumption of 0.34 W. 1075

The experimental results of the UAV tracking sys- 1076

tem validate the robustness and energy efficiency of 1077

the proposed FxT-CL-ACI control scheme under real- 1078

world disturbances: 1079

1. The proposed FxT-CL-ACI scheme achieves robust 1080

trajectory tracking with bounded errors under real- 1081

world disturbances 1082

2. Fixed-time learning enables rapid convergence of 1083

neural network weights within 100 s 1084

3. The control strategy effectively balances tracking 1085

accuracy and energy efficiency 1086

4. The Stackelberg game framework successfully 1087

handles the trade-off between optimal tracking and 1088

disturbance rejection 1089

These comprehensive experimental results demon- 1090

strate the practical effectiveness of the proposed control 1091

scheme for real-world UAV applications requiring both 1092

robust performance and energy efficiency. 1093

7 Conclusion 1094

This paper presents a novel fixed-time concurrent 1095

learning-based actor-critic-identifier (FxT-CL-ACI) con- 1096

trol scheme for robust optimal tracking control of non- 1097

linear systems with uncertainties and disturbances. A 1098

Stackelberg game framework is established to design 1099

the robust optimal tracking controller by sequential 1100

optimization of H2 and H∞ performance indices, 1101

addressing both tracking performance and disturbance 1102

rejection. An ACI architecture with FxT-CL is devel- 1103

oped to approximate the optimal control solution while 1104

identifying uncertain system parameters online. The 1105

FxT convergence property ensures rapid learning. Lya- 1106

punov stability analysis proves that under the proposed 1107
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Fig. 7 Comprehensive performance analysis of the UAV tracking system

scheme, both closed-loop system states and ACI esti-1108

mation errors are ultimately uniformly bounded with1109

FxT convergence. Comprehensive validation through1110

numerical simulations and UAV hardware experiments1111

demonstrates the tracking capabilities and disturbance1112

rejection properties of the proposed control scheme.1113

Four key limitations of the current approach encom-1114

pass:1115

1. Computational Complexity: The FxT-CL-ACI1116

scheme requires significant computational resources1117

for real-time implementation, which may limit its1118

applicability on resource-constrained platforms.1119

2. Parameterization Requirements: The approach1120

relies on appropriate parameterization of system1121

dynamics and neural network structures, requiring 1122

domain expertise for effective implementation. 1123

3. Initialization Sensitivity: While the method guar- 1124

antees fixed-time convergence, the performance 1125

can still be influenced by initial weight selection 1126

and learning parameter tuning. 1127

4. Disturbance Model Limitations: Performance 1128

depends on the accuracy of disturbance modeling 1129

within the Stackelberg game framework and may 1130

degrade under unmodeled disturbance patterns. 1131

Future research directions include extending the pro- 1132

posed framework to stochastic systems and multi-agent 1133

coordination problems, and exploring the development 1134

of a fixed-time integral reinforcement learning (FxT- 1135
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IRL) framework that combines model-free advantages1136

with guaranteed fixed-time convergence properties.1 1137
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